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Monosubstituted vinylstannanes, whose stannyl groups can beTable 1. Ruthenium-Catalyzed Hydrogenation of
. . . =] - -1- a
transformed to various organic groups (e.g., through the Kesugi 1 fieutyl(oct-1-yn-1-yljtin

Migita—Stille protocol)! are versatile precursors for disubstituted ruthenium addional  tme  conv. yield
ethenes. Althougf3-substituted vinylstannanes withtrans or cis entry catalyst PBuU, () (%) (%)
configuration can be obtained through diverse types of transforma- 1 Rw(COX2 + 30 >99 79
tion reactiong, no simple method applicable to a wide range of 2 Ru(CO)2 - 48 >99 <1
compounds is available fax-substituted vinylstannanes. Among 3 Rukp(CO)(PBu)s R 6 >9 92
" > . 4 Rw(CO) + 8  >99 85

the reported methods,.the addition of-9v1 (M = Cu, Si, AI,. Mg, 5 RuMx(CO)(PPh)s + 6 ~99 92
or Sn) bonds to terminal alkynes followed by hydrolysis of the 6 RuH,(CO)(PPh)3 — 48 >99 19
resulting G-M bonds seems to be the most reliableowever, 7 Rqu(C(e))z(PBLt;)z - 12 >99 87
troublesome preparation and handling of the starting dimetallic 8  [RuCk(y>-p-cymene)} + 48 >99 24
. ; 9 RUuChL(DMSO), + 24 66 10

compounds make the method inconveni€ntlere, we report a 10 none . 30 8 <1

new facile protocol for the synthesis @fsubstituted vinylstannanes,
namely, the ruthenium-catalyzed hydrogenation of alkynylstannanes aThe experiment was carried out in DMSO (0.30 mL) at80under a
accompanied by the migration of the stannyl group. To the best of hydrogen atmosphere using tributyl(oct-1-yn-1-yltin (0.40 mmol) and a

: ruthenium catalyst (5.0 mol % Ru) in the presence or absence of (3Bu
our knowledge, there has been no report on the hydrogenation ofmol %). b Determined by GCS Rus(CO)io—PBU preheated in DMSO under

alkynylstannanes, including 1,2-additién. a hydrogen atmosphere at 80 for 24 h.
Treatment of tributyl(oct-1-yn-1-yl)tin1@) with Ruy(CO), (5 ) _
mol % Ru) and tributylphosphine (30 mol %) under an atmosphere Xﬁgﬁ yzl.stalﬁrtgzgggm-Catalyzed Hydrogenation of
of hydrogen in DMSO at 80C for 30 h gave a 79% vyield of
2-tributylstannyl-1-octene2é) but no oct-1-en-1-ylstannane, the time  yield

normal hydrogenation product @f (eq 1 and entry 1 of Table 1), entry R ligand M) (%)’ product
where the use of tributylphosphine is critical (entry 2). The 1 Hex (La) PBus 6 89 2a
2 i-Pr (Lb) PBi 32 77 2b

hydrogenation proceeded more smoothly with hydride complex,
3 HO(CH)4 (1€ PBu 12 78 2c
RuH;(CO)(PBu)s (entry 3)° whereas pretreatment of a ROO)— 4 ,\,,E,é)co)(“é},i))4 (1d) PBU, 30 65 2d
5
6

PBw complex in DMSO with a hydrogen gas also reduced the Me;NCO(CHy)4 (16) PBus 14 71 2e
reaction time (entry 4).The use of stable and commercially NC(CH)s (1f) PBu 48 70 2f
available RUH(CO)(PPHh),, in combination with PBy) also worked r E0dg PBu 6 65 29
P . . 8 BuzSnG=C (1h) PBus 16 38 2h
(entry 5)% whereas the absence of PBResulted in a low yield 9 Ph (i) PBLs 24 8 2
(entry 6). Carbon monoxide as a ligand was found to play an 19 Ph (i) PN 4 89 2i
important role (entry 7 vs entries 8 and 9), and no hydrogenation 11 4-MeOGH4 (1j) PN 4 81 2j
product was generated without a ruthenium catalyst (entry 10). 12 4-CRCeH, (1K) PN 4 25 2k
13 4-CRCgH4 (1K) PN9 4 5 2k
R 14 4-BrGsHa (11) PN 4 55 2l
R—mm—SnBu.  + H Ru cat. (5 mol %) 0 15 2-MeGHy (1m) PN 24 77 2m
T 8 2 DMSO, 80 °C BU.SH 16 3-thienyl (Ln) PN 4 65 2n
1 (1 atm) S 17 1-cyclohexenyl1o) PNY 24 52 20

. . aThe reaction was carried out in DMSO (0.30 mL) at 8D under a
The Rub(CO)(PPh)s—PBu; catalyst, which has shown the best hydrogen atmosphere using alkynylstannane (0.40 mmol)R®)(PPh)3

compatibility between catalytic activity and availability thus far, (5.0 mol %), and a ligand (30 mol % PBor 10 mol %PN). P Isolated
was applicable also to various aliphatic alkynylstannanes (entries yifegi'\/flbgsée(g (1)r11ﬂ|138' alkynylstannaﬁgfoluene ;NaS used asé a ?%\&Aeg;vinﬁtead
1_.8 of Table 2), where functional groups, SL.JCh as hydrOXy_’ ester, ?3% con\}ers’io-rl g{(ﬁn&wg;&srg O?S:L,%-Sa%\étiatinotr:n[?rtggucct)s (58:4E:ltZ)
amide, and cyano, were tolerated. For a bisstannylbutadiyne, anwas produced in 53% yield.PN (20 mol %) was used! A mixture of
acceptable selectivity for monohydrogenation was observed at 73%1,2-addition products (60:4B:Z) was produced in 25% yield A mixture
conversion, though the yield was rather low (entry 8). In contrast ©f 1,2-addition products (43:5#:2) was produced in 35% yield.

to aliphatic alkynylstannanes, tributyl(phenylethynyl)titi)(was
hydrogenated only in a low yield with RytCO)(PPh);—PBuw;
(entry 9). After thorough investigation, we foutyN-dimethyl-2-

diphenylphosphinobenzylamin®I{) to be an effective ligand for
1i and other phenylethynylstannanes substituted with an electron-
donating or -withdrawing group at thgara or ortho position in
TK T addition to a heteroarylethynylstannane (entries 16) ° Although

yoto University. . ; . . .
*Japan Advanced Institute of Science and Technology. an electron-withdrawing substituent induced 1,2-hydrogenation to
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a considerable extent, the use of an increased amouNof
improved the selectivity (compare entries 12 and 13). A dienyl- @
stannane was obtained from a stannylenyne in moderate yield (entry
17).

The corresponding deuteration is also possible. Thus, 1,1-
dideuterio-2-stannyl-1-alkene®Y, with perfect deuteration ratios,
were obtained under a deuterium atmosphere with hydrogen-free
catalysts (eq 2)° Note that deuterated alkynylstannanes, which can
be easily transformed to an important class of deuterium-labeled
compounds, were prepared using a highly accessible deuterium
source, such as molecular deuterium. The cross-coupling re&¢tion, 3
the addition to an aldehyde after transmetalation withutyl-
lithium,'2 or the deuteriolysis of2’a afforded a phenylated,
hydroxymethylated, or deuterated product, respectively, with the
intact =CD, moiety (Scheme 13 Hydrogenation products also
should be converted into various alkenes in similar ways.

~

~

R Snb . b Ru cat. (5 mol %) R D @
== n —_—
" 2 'DMSO,80°C Bus? b
1 (1 atm) 3 o
4)
R Ru cat. time yield
Hex  Rus(CO)¢5 (1.7 mol %)/PBug (30 mol %) 30h 71%
Ph RuCl,(CO),(PPhg), (5 mol %)/PN (10 mol %) 8h 74%

~

Scheme 1. Transformations of Deuteration Product 2'a (5

1) BuLi (1.0 equiv)
THF,—78°C,2h _ eX_ P
Ph—I (1.0 equiv) 2) PhCHO (1.0 equiv) PhﬁD 6)
Pd(PPhg)4 (5 mol %) THF,0°C,3h oH
H D CuCl (1.0 equiv) H D
eX LiCl (1.5 equiv) ex 84%
pf D DMSO,60°C,48h g, qf
o
83% Hex D

| DCI (20% in D,0)
THF, rt,2h D D (7
80%

~

Although the reaction mechanism is unclear at present, the (8)
migration of stannyl groups, in addition to the tendency for
ruthenium complexes to form vinylidene complexes upon reaction  (9)
with terminal alkyne¥' or alkynylsilanes® may imply that (10)
ruthenium-p-stannylvinylidene complexes, Ré=C(SnBu)R, are
possibly involved in the hydrogenation. a1

In conclusion, we have disclosed the first example of the
transition-metal-catalyzed hydrogenation of aromatic and aliphatic
alkynylstannanes. The hydrogenation, catalyzed by a ruthenium (13)
complex, is accompanied by the migration of a stannyl group, giving
a-substituted vinylstannanes, which are otherwise not easily ac-
cessible. Studies on the mechanistic details, as well as application
of the system to other substrates, are in progress.
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